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T
he building sector is the largest energy consumer in the world. Therefore, 
it is economically, socially, and environmentally signifi cant to reduce the 
energy consumption of buildings. Achieving substantial energy reduction 
in buildings may require rethinking the whole processes of design, con-
struction, and operation of a building. This article focuses on the specifi c 
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issue of advanced control system design for energy effi cient 
buildings. 

Building controls design becomes especially challeng-
ing as practitioners move beyond standard heuristic con-
trols approaches and seek to incorporate predictions of 
weather, occupancy, renewable energy availability, and 
energy price signals. [1], [2]. Model predictive control [3] 
(MPC) naturally enters the picture as a control methodol-
ogy that can systematically use all the aforementioned pre-
dictions to improve building thermal comfort, decrease 
peak demand, and reduce total energy costs. 

In buildings, performance improvement using fore-
casted information is possible due to two basic mecha-
nisms. The first mechanism is referred to as load shifting or 
active storage. Load shifting consists of shaping the energy 
profile delivered to a building, exploiting the possibility of 
storing energy for later use. Thermal storage is inherent to 
a building’s structure and can be increased by including 
additional external energy storage devices. The optimal 
profile of delivered energy depends on various factors 
which include time varying utility prices, availability of 
renewable energy, ambient temperature variation, and load 
shedding signals received from the utility grid. The second 
mechanism is component optimization. Buildings can be 
large systems with many control variables and degrees of 
freedom. Predictive models of building thermal dynamics 
and energy costs of control actuators allow computation of 
the optimal inputs to each actuator in order to deliver the 
desired energy profile. The two mechanisms are coupled in 
an actual MPC control strategy. It is challenging to isolate 
the contribution of each mechanism to the total perfor-
mance improvement, especially under model mismatch 
and uncertain forecasts. 

This article has two main objectives. In the first part we 
show the basic mechanism of active thermal storage and 
how this mechanism naturally emerges in a predictive 
control scheme. We use a thermal mass model in order to 
demonstrate a fundamental tradeoff between savings, 
losses, and uncertainty. This basic tradeoff also exists 
when realistic building models and performance indices 
are used. In the second part we present a more complex 
predictive control scheme with reduced order models for 
the building components and for thermal storage. Simula-
tion and experimental tests are used to show the effective-
ness of MPC. In particular, we demonstrate that MPC is 
able to systematically reproduce and coordinate a variety 
of established commercial solutions for energy savings, 
including demand response, economizer-mode, and pre-
cooling/preheating. 

This article focuses on building heating, ventilation, 
and air conditioning (HVAC) systems where cooling and 
heating rely on centralized chilled water and hot water 
generation, respectively. The two mechanisms of load shift-
ing and optimal component operation can be implemented 
during both energy conversion and energy distribution to 

the building spaces. We present the predictive control 
design for both systems. The ultimate goal is to provide the 
main ingredients of a predictive control framework needed 
for an actual implementation. At the same time we want to 
explain, through simple examples, the benefits of active 
thermal storage and the potential advantages and disad-
vantages of MPC over conventional building control 
sequences. 

MODEL PREDICTIVE CONTROL 
AND THERMAL STORAGE: A SIMPLE EXAMPLE
To create thermally comfortable indoor environments, 
energy is converted and delivered to occupied spaces in 
buildings. In this article, occupant comfort is measured by 
the air temperature of a given space. The objective of this 
section is to use a simple thermal mass model to show the 
basic principles of active thermal storage, to demonstrate 
that active storage naturally emerges as a closed-loop 
behavior of an MPC scheme, and to discuss the main trad-
eoffs that arise in active thermal storage. 

The temperature dynamics of a given space can be mod-
eled using a resistance-capacitance (RC) circuit analogy 

 CT
#
5 u1 Pd1 1Toa2 T 2 /R,  (1)

where T is the temperature of the space, Pd is the external 
disturbance load generated by occupants, direct sunlight, 
and electrical devices, Toa is the temperature of outside air, 
and u is the heating and cooling power input to the space. 
The space is cooled when u # 0 and heated when u $ 0. 

In an energy conversion problem, the simplified ther-
mal mass model (1) can be viewed as the abstraction of an 
entire building and the temperature T is an average tem-
perature of all the building spaces. In an energy distribu-
tion problem, the simplified thermal mass model (1) can 
be viewed as the abstraction of one zone within a build-
ing, and T is the temperature measurement of the zone. In 
this case, the lumped parameter R describes the thermal 
resistance of walls and windows isolating the zone from 
the outside environment, and the parameter C lumps up 
the thermal capacitance of the zone. The active storage 
mechanism shares the same properties for both control 
problems. 

The representation of system (1) in discrete time is 
obtained using Euler discretization with a sampling time 
of Dt, 

 T 1k1 1 2 5AT 1k 2 1 Bu 1k 2 1 d 1k 2 ,  (2)
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A simple MPC problem is formulated with the objec-
tive of minimizing total heating and cooling energy 
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 consumption, minimizing the peak power consumption, 
and  maintaining zones within a desired temperature range 
despite predicted load changes. At each time step, the pre-
dictive controller solves the following problem: 

 min
Ut, e , e a

N21

k50
0ut1k 0 t 0Dt1kmax5 0 ut 0 t 0 , c, 0 ut1N21 0 t 0 6

 1ra
N

k51
1 0 et1k 0 t 01 0 et1k 0 t 0 2  (3) 

subject to 

 Tt1k11 0 t5ATt1k 0 t1 But1k 0 t1 dt1k 0 t,  (4) 

 T2 et1k 0 t # Tt1k 0 t # T1 et1k 0 t,  (5) 

 e t1k 0 t, et1k 0 t $ 0,  (6)

where the symbol vt1k 0 t is read as “the variable v at time 
t1 k predicted at time t.” For instance, T3 01 represents the 
predicted temperature at time 3 when the prediction is 
made at time t5 1 starting from the current temperature 
T 11 2 . It is, in general, different from T3 02, which is the pre-
dicted temperature at time 3 when the prediction is made 
at time t5 2 starting from the current temperature T 12 2 . 
With this notation in place, Ut5 3ut 0 t, ut11 0 t, c, ut1N21 0 t 4  is 
the vector of energy control inputs, e 5 3et11 0 t, c, et1N 0 t 4 
is the vector of temperature violations below the lower 

bound, e collects the temperature violation above the 
upper bound, Tt1k 0 t is the thermal zone temperature, and 
dt1k 0 t is the load prediction. T and T are the lower and 
upper bounds on the zone temperature, respectively. r is 
the penalty on the comfort constraint violation, k is the 
penalty on peak power consumption, and N is the length 
of the prediction horizon. 

Let Ut
*5 5u*

t 0 t, c, ut1N21 0 t* 6  be the optimal solution to 
(3)–(6) at time t. The first element of Ut

* is applied to 
system (2) 

 u 1t 2 5 ut 0 t* . (7)

The optimization problem (3)–(6) is repeated at the next 
time step t1 1 based on the new measured temperature 
Tt11 0 t115 T 1t1 1 2 , yielding a moving or receding horizon 
control strategy. 

The following parameters are used in the simulations 
presented next. Thermal capacitance C5 9.2 3 103 kJ/°C, 
thermal resistance R5 50 °C/kW, sampling time Dt5 1 
hour, prediction horizon N5 24 hours, and thermal com-
fort interval 3T, T 45 321, 26 4  °C. Note that the plant model 
(2) and the model used in the MPC scheme (4) are the 
same. It is assumed that weather and load are periodic 
with a period of one day, and that their predictions are 
perfect without mismatch between predictions and actual 
measurements. The outside air temperature profile Toa 1t 2  
used in (1) is depicted in Figure 1(a), and the disturbance 
load profile Pd 1t 2  used in (1) is depicted in Figure 1(b). 
The load Pd 1t 2  resembles a 3-kW thermal load of a confer-
ence room with one meeting from 9:00 to 11:00. 

Two controllers are considered. Controller C1 is a pro-
portional controller designed to reject the load without 
predictive information. Controller C1 inputs zero power 
when the space temperature is within the comfort range, 
otherwise the proportional control law 

 u 1t 2 5 •K 1T2 T 1t 2 2 T 1t 2 $ T, 
0 T , T 1t 2 , T, 
K 1T2 T 1t 2 2 T 1t 2 # T

 (8) 

is applied to system (2). Controller C2 implements the MPC 
problem (3)–(7). 

Simulations of system (2) in closed-loop with C1 and 
C2 are performed until the system settles to steady-peri-
odic behavior. The performance of the controllers is mea-
sured by the closed-loop total energy consumption 

 Ju5 a
N21

k50
0 u* 1k 2 0Dt, (9) 

the peak power consumption 

 J p5max5 0 u* 10 2 0 , c, 0 u* 1N2 1 2 0 6, (10) 
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FIGURE 1 Predicted ambient temperature and load profiles used for 
the simple model predictive control example. The ambient tempera-
ture profile is  measured from a sensor located at the University of 
California, Merced, on July 3, 2009. The load profile corresponds to 
a group meeting scheduled between 8:00 and 11:00 every day with 
a constant 3-kW occupancy load. (a) Ambient temperature (°C) and 
(b) disturbance load (kW).
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and the total comfort violation 

 Je 5 a
N

k50
1 0 e* 1k 2 0 1 0 e* 1k 2 0 2Dt. (11)

Closed-loop simulations are performed with various gains 
K of the controller C1 and various tuning r of MPC with no 
penalty on peak power consumption, that is k5 0. Figure 2 
shows the tradeoff between comfort violation and total 
energy consumption. It is observed that C1 and C2 use the 
same energy for the same amount of constraint violation. 
As expected, increased comfort violation corresponds to a 
lower energy use for both controllers. Note that the results 
above are valid for the model (2) and the performance indi-
ces defined by (9)–(11). 

When k 2 0, a different behavior is observed. Simula-
tion results for C1 with K5 400 and C2 with r5 1000 and 
k5 2 are plotted in Figure 3. The peak power consumption 
J p is reduced by 89% relative to the proportional controller 
C1 when MPC C2 is used. For both controllers the comfort 
violation index J e is zero. This behavior is obtained by 
taking advantage of the predictive information of the dis-
turbance and using the space thermal storage. In fact, MPC 
precools the space temperature to 22.8 °C before the occu-
pancy load begins. This precooling behavior reduces the 
peak power consumption of the system and flattens the 
control profile. 

In the previous simulation, the total energy consump-
tion Jp of MPC is increased by 6.3% compared to the pro-
portional controller. The increase in energy consumption is 
due to energy losses through the resistance R while pre-
cooling. The tradeoff between the total energy losses 1JC2

u 2 JC1
u 2 /JC1

u  and the peak power reduction 1JC1
p 2 JC2

p 2 /JC1
p  

is further explored in Figure 4. The tradeoff lines are gener-
ated for different tunings of k taken from the interval 30, 5 4 
and three different thermal resistances with values 
R05 50 °C/kW, R0/5, and 5R0. The MPC achieves lower 
peak power consumption at the cost of higher energy con-
sumption. MPC energy losses relative to the proportional 
controller decrease as the thermal resistance R in (1) 

1

0.99

0.98

0.97   
 S

ca
le

d 
C

on
tr

ol
 C

os
t J

u /
J

u m
ax

MPC Controller = P Controller

0 0.2 0.4 0.6 0.8 1
Scaled Comfort Violation J ε/J εmax

FIGURE 2 Comparing model predictive control (MPC) (C2) and pro-
portional controller (C1). Observe that C1 and C2 use the same 
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FIGURE 3 Closed-Loop simulations with model predictive control 
(MPC) and proportional control. The peak power consumption J p 
is reduced by 89% relative to the proportional controller when the 
MPC is used. For both controllers the comfort violation index J e 
is zero. This behavior is obtained by taking advantage of the pre-
dictive knowledge of the disturbance and using the space ther-
mal storage. In fact, the MPC precools the space temperature to 
22.8 °C before the occupancy load begins. This precooling 
behavior reduces the peak power consumption of the system and 
flattens the control profile. (a) Zone temperature (°C) and (b) 
cooling input (kW).
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FIGURE 4 Comparison between model predictive control (MPC) and 
proportional control in terms of closed-loop total energy losses 1 1JC 2
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u 2  and peak power reduction 1 1JC1
p 2 JC 2

p 2 /JC1
p 2 . Sim-

ulations are performed for different MPC tunings and three different 
thermal resistances with R05 50 °C/kW. The total energy con-
sumption of MPC (C2) is larger than that of the proportional con-
troller (C1). Larger peak power savings of the MPC correspond 
to higher energy losses. The increased energy consumption is 
due to energy lost though the resistance R  while precooling. 
MPC can achieve lower peak power consumption at the cost of 
higher energy consumption. MPC energy losses with respect to 
the proportional controller decrease as the thermal resistance R 
in (1) increases. 
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increases. Thorough studies on load shifting have appeared 
in [4] and [5]. 

The above example shows the benefits and tradeoffs 
resulting from the use of MPC. However, three important 
elements are not captured by the example. The first element 
is the complexity of the real problem. Buildings are more 
complicated than simple RC systems. For details, see “The 
Problem Complexity.” It is therefore necessary to derive 
descriptive models that are simple enough for real-time 
optimization in MPC and bring substantial savings to the 
real world. In the next sections we address this issue by 
providing a brief description of how building cooling and 
heating systems work, describing abstraction models at dif-
ferent hierarchical levels, and presenting MPC algorithms 
for each hierarchical level. The second element not cap-
tured by the example is the complexity of the cost function. 
The cost function of an MPC scheme in practice includes 
more detailed energy consumption functions for system 
components and external signals such as time varying util-
ity price, availability of renewable energy, and load shed-
ding signals received from the utility grid. The resulting 
MPC logic combines load shifting with additional features 
such as peak electrical power reduction and free cooling. 
We provide details on this issue in the next sections. The 
third element not captured by the example is the uncer-
tainty in predictions. In reality, the model and predictions 
of load and weather are uncertain. The last part of this arti-
cle briefly discusses this issue and addresses future 
research directions. 

For the sake of brevity, we concentrate on the cooling 
side. Despite different central equipment for heating con-
version, the heating architecture is similar to the cooling 
one. As a result, the abstraction levels and control method-
ology in this article can be extended to heating systems 
with minimal effort. 

COOLING CONTROL SYSTEMS
This section describes a building HVAC system by divid-
ing it into two parts, namely, energy conversion and energy 
distribution. We refer to the energy conversion system as 
high level and to the energy distribution system as low level. 
At the high level system, a centralized chilled water gen-
eration system produces the required cooling energy. It is 
assumed that an energy storage device is available. This 
article focuses on thermal energy stored in a stratified 
water tank. At the low-level system, subsystems known as 
air handling units (AHUs) transfer energy from distrib-
uted chilled water into localized air flows. These air flows 
are transported to buildings’ spaces, delivering cooling 
energy where required. The next sections describe the 
high-level chilled water generation, storage element, and 
low-level AHU system. 

High Level: Components Outside a Building
Figure 5 depicts the main components of a cooling system 
based on chilled water generation, storage, and distribu-
tion. The system can serve either a single building or 
multiple buildings. Chillers and cooling towers are 

Building control design is not straightforward for a long list 

of reasons. Here we highlight some of the main features of 

the problem that make it so complex. 

Building heating, ventilation, and air conditioning (HVAC) 

systems convert and transport energy through working flu-

ids, primarily air and water. The flow dynamics of air and wa-

ter through distribution networks are described by nonlinear 

partial differential equations, specifically the Navier-Stokes 

equations. The computational fluid dynamics technique is 

computationally intensive and requires a complete geometry 

description at all length scales. This level of detail is rarely 

available for a real building. A more common approach is 

to approximate the velocity, temperature, and pressure dis-

tributions with reduced order lumped nodal models. The 

nodes in a nodal HVAC system model are defined by compo-

nents. Each component has distinctive and potentially com-

plicated behavior often described by nonlinear equipment 

performance curves. 

HVAC components are arranged into HVAC systems in 

a variety of different configurations as a result of evolving 

design practices. A handful of standard configuration types 

are more common than others, but virtually every building 

is unique. Therefore, the spatial locations, type of com-

ponents, and methods used to implement a control action 

are highly dependent on the specific HVAC system. For in-

stance, overhead air distribution systems use a different set 

of actuators from under-floor air distribution systems, and 

both differ from systems that use water-based radiators for 

conditioning. 

The control objective of an HVAC system is occupant ther-

mal comfort. In this article, we treat comfort as being equiva-

lent to a specific range of spatial air temperatures. A large body 

of ASHRAE and other literature [32] have investigated more 

complicated representations of occupant comfort. These more 

detailed comfort models take into account metabolism and 

biological factors, air velocity, humidity, heat transfer through 

radiation, free convection, and other effects [33]. 

In addition to maintaining comfort and temperature regu-

lation, HVAC controllers can have additional requirements on 

humidity regulation, proportions of fresh versus recirculated air 

for indoor air quality, flow rates for ventilation, and pressuriza-

tion of spaces.

The Problem Complexity
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responsible for generating chilled water. The chillers 
remove heat from the chilled water loop by means of a 
vapor-compression or absorption refrigeration cycle. 
Cooling towers reject heat from the chiller cycle to the 
ambient environment by evaporation and forced convec-
tion using electric fans. 

The chilled water storage element in Figure 5 can shift 
the peak cooling thermal energy load so that the chillers 
and cooling towers can run only when it is most efficient. 
The logic behind the load shifting depends on various fac-
tors including time varying utility prices, availability of 
renewable energy, lower ambient temperature, and load 
shedding signals received from the utility grid. The 

chilled water is distributed through insulated piping 
using hydraulic pumps. The valve in Figure 5 controls the 
chilled water flow to either fill the storage element or 
serve the buildings with a desired mass flow rate of 
chilled water. 

Several thermal storage elements are available in the 
building industry. This article focuses on a stratified chilled 
water tank that can store chilled water, such as the one 
installed on the campus of the University of California at 
Merced [6], [7]. Other storage devices are available using 
ice balls or concrete slabs to store thermal energy. 

Low Level: Components Inside a Building
The main components used to produce and distribute cool 
air in a building are depicted in Figure 6. They are AHUs 
and variable air volume (VAV) boxes. The AHU recirculates 
return air from building spaces, and mixes it with fresh 
outside air. The ratio of return air flow to outside air flow is 
controlled by dampers located inside the AHU. The mixed 
air is cooled by a cooling coil that transfers cooling energy 
from the chilled water that is generated or stored by the 
high-level system. 

The air temperature downstream of the cooling coil 
depends on the mass flow rate of chilled water through 
the cooling coil, the temperature of the chilled water, the 
temperature of mixed air entering the cooling coil, the 
mass flow rate of the mixed air, and the physical charac-
teristics as well as thermal effectiveness of the cooling 
coil. Cool air is delivered to the building spaces by electric 
supply fans. Before reaching the building spaces, the air 
goes through VAV boxes. At each VAV box, the air flow 

Condenser
 Water

Condenser
 Water

Cooling Towers

Chillers

Storage Element

Buildings

C
hilled W

ater
R

eturn

C
hilled W

ater
S

upply

P
um

p 1
P

um
p 3

Pump 2

Valve

Hot Water

Cold Water

© 2011 Google

Return Supply

FIGURE 5 Schematic of a cooling system based on chilled water 
generation, storage, and distribution. The system can serve either 
a single building or multiple buildings. The chillers and the cooling 
towers are responsible for generating the chilled water. The chilled 
water is distributed through insulated piping using hydraulic 
pumps. A valve controls the chilled water flow to either fill the stor-
age element or serve the buildings with a desired mass flow rate 
of chilled water. The chilled water storage element can shift the 
peak cooling demand so that the chillers and cooling towers can 
run only when it is most efficient to do so. The logic behind the 
load shifting can depend on various factors, which include time 
varying utility prices, availability of renewable energy, lower ambi-
ent temperature, and load shedding signals received from the util-
ity grid. The thermal storage tank can operate in two modes. When 
the chilled water supply flow is greater than the water flow 
demanded by the buildings, the excess flow charges the tank. 
When the chilled water supply flow is less than the water flow 
demanded by the buildings, the tank is discharged to compensate 
for the insufficient chilled water supply. 
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FIGURE 6 Schematic of the air distribution system. Air handling 
units (AHUs), supply fans, and variable air volume boxes consti-
tute the main equipment used to produce and distribute cool air in 
a building. The AHU recirculates return air from building spaces, 
and mixes it with fresh outside air. The ratio of return air flow to 
outside air flow is controlled by damper positions in the AHU. The 
mixed air is then cooled by the cooling coil that transfers the cool-
ing energy from the chilled water that is generated or stored by the 
high-level system.
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rate supplied to the space is regulated by a damper. In 
addition, air temperature can be increased using a reheat 
coil installed in the VAV box when needed. A space served 
by one VAV box is referred to as a thermal zone. The deliv-
ered air enters a thermal zone through diffusers that are 
designed to fully mix the incoming air with the air in the 
thermal zone. 

HIERARCHICAL LEVELS AND SYSTEM MODELING
We follow the structure of the previous section and present 
reduced order models for both the high level and low level 
of buildings. For each level we describe the associated 
dynamics, components that use energy, and thermal energy 
load. When a multitude of buildings is controlled, the rele-
vant model dynamics at the high level are the dynamics of 
thermal energy storage devices. The buildings’ cooling or 
heating thermal energy loads are modeled as a lumped 
heat flux, and the main components consuming energy are 
chillers, cooling towers, and pumps. At a low level the rel-
evant model dynamics are the dynamics of thermal zones. 
The thermal energy load combines the loads generated by 
occupants, solar radiation, and electrical devices. The com-
ponents consuming energy are a supply fan, a cooling coil, 
and heating coils. 

High Level: Modeling a Building from the Outside

Storage Dynamics
A model of a water tank used for actively storing chilled 
water is presented and validated with data collected 
from the campus of the University of California, Merced. 
The water in the tank is subject to negligible mixing, 
thus the tank can be modeled as a stratified system with 
layers of warmer water at the top and cooler water at the 
bottom. Figure 7 depicts the temperature of water mea-
sured inside the tank at different heights at 8:30 on 
November 29, 2007. A thin layer of water, known as a 
thermocline, that has a steep temperature gradient over 
the height of the tank can be observed. Warmer water 

above the thermocline and cooler water below the ther-
mocline are lumped up to obtain a four-state system 
describing the height and temperature of the warmer 
and cooler water, respectively. 

The tank is assumed to be part of a closed hydraulic 
loop, thus the mass flow rate entering the tank is equal to 
the mass flow rate exiting the tank. Subsequently, the total 
height of water in the tank ztank is the sum of the height of 
warm water za and the height of cool water zb in the tank. 
The tank dynamics are governed by mass and internal 
energy conservation laws 

 z
#
b5

m
#

CHWS2m
#

cmp

rprtank
2 ,   z# a1 z

#
b5 0,  (12) 

 U
#

a5H
#

a1Q
#

b.a1Q
#

oa.a,  U
#

b5H
#

b1Q
#

a.b1Q
#

oa.b,  (13)

where r is the density of the water, rtank is the inner radius 
of the tank, m# CHWS is the mass flow rate of water supplied 
to the buildings, and m# cmp is the mass flow rate of water 
returning from the buildings. U*5rprtank

2 z*cpT* is the 
internal energy of the water in the tank, where *5 a 
denotes variables for warmer water, and *5 b denotes 
variables for cooler water. Q

#
oa.a is the heat transferred 

from ambient to the warmer water in the tank, Q
#

oa.b is 
the heat transferred from ambient to the cooler water in 
the tank 

 Q
#

oa.a5 1Toa2Ta 2 12prtankza 2k1,

 Q
#

oa.b5 1Toa2Tb 2 12prtankzb 2k1.  (14)

Q
#

a.b is the heat conducted from warmer water to cooler 
water in the tank, and Q

#
a.b is the heat conducted from 

cooler water to warmer water in the tank. 

 Q
#

a.b5 1Ta2 Tb 2 1prtank
2 2k2,  Q

#
b.a52Q

#
a.b,  (15)

where k1 and k2 are heat transfer coefficients, H
#

a is the 
enthalpy rate for the warm water in the tank contributed by 
water flow, and similarly H

#
b for the cooler water. 

The thermal storage tank can operate in two modes. 
When the chilled water flow m

#
CHWS is greater than the 

water flow demanded by the buildings m
#

cmp, the excess 
flow fills the tank. Hence the water flow enthalpy rates are 
calculated as 

 H
#

a52 1m# CHWS2m
#

cmp 2cpTa,  H
#

b5 1m# CHWS2m
#

cmp 2cpTCHWS.

 (16) 

When the chilled water flow m# CHWS is less than the water 
flow demanded by the buildings, the water in the tank 
compensates for the insufficient chilled water supply. 
Hence the water flow enthalpy rates are calculated as 

 H
#

a52 1m# CHWS2m
#

cmp 2cpTcmp,r,  H
#

b5 1m# CHWS2m
#

cmp 2cpTb,
 (17)
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FIGURE 7 The water in a stratified storage tank is subject to negli-
gible mixing. This figure depicts the temperature of water mea-
sured inside the stratified tank of University of California, Merced, 
at different heights. The presence of a thin layer of water that has 
a steep temperature gradient over the height of the tank can be 
observed. This layer is called a thermocline. 
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where Tcmp,r is the temperature of return water from 
buildings. 

The simplified model (12)–(17) is validated using mea-
sured data from May 22–29, 2007. The measured inputs 3m# CHWS, TCHWS, m

#
cmp, Tcmp,r 4  are applied to the tank model, 

and the output of the model 3za, zb, Ta, Tb 4  is compared 
with the measurements in Figure 8. Figure 8(a) shows the 
tank water temperature validation results. The solid lines 
are the temperature measurements of the top layer water 
Ta and bottom layer water Tb in the tank, and the dotted 
lines show the predicted cooler and warmer water tem-
perature. The tank model captures the temperature 
dynamics of the top and bottom layers of the tank water as 
well as the dynamics of the cool water height [Figure 8(b)]. 
However, the second peak of the top water temperature 
during the day is not captured due to the formation of a 
second thermocline (note in Figure 8(a) the bumps above 
15.2  °C every afternoon). A higher order model overcomes 
this limitation. We preferred to not increase the model 
order in order to avoid real-time implementation issues. 
More details can be found in [8]. 

Load Modeling
At a high level, buildings can be modeled as load demand 
elements. A lumped load model predicts the total energy 
requested by a building based on date, time, occupancy, 
and weather. In the approach studied in [9], the building 
load model has two subcomponents, namely, the solar 
and internal load predictor and the building thermal 
load predictor [34]. Both components are depicted in 
Figure 9. The solar and internal load predictor uses time, 
date, and cloud coverage as its inputs and calculates 
inside and outside solar loads as well as internal loads. 
The outside solar load reflects the solar energy on the 
outer surface of the building, while the inside solar load 
is the solar radiation into the building through win-
dows. The internal load includes the heat from people, 
lights, and equipment. 

The building thermal load predictor predicts the cool-
ing load of buildings, which are conventionally modeled 
by RC circuit analogy [10], [11]. The building thermal load 
model is sketched in Figure 10. R1 represents the  thermal 
resistance of windows. The walls are separated into two 
layers, where Cin and Cout capture the thermal capacitance 
of the wall when influenced by outside and inside solar 
loads, respectively. The thermal resistance between Cin 
and Cout is modeled by R3, while R2 and R4 capture the 
thermal resistance associated with heat convection. The 
interconnection of the thermal components is shown in 
Figure 10. The model inputs are outside air temperature 
Toa, outside solar load Q

#
Solar,out, inside solar load Q

#
Solar,in, 

internal load Qinternal, and the indoor temperature setpoint 
Tsp. The model internal states are the temperatures of the 
thermal masses Tin and Tout. The model output is the cool-
ing load demand Q

#
Load. 
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FIGURE 8 The tank model (12)–(17) is validated using measured 
data collected from the tank at University of California, Merced. We 
applied the measured inputs to the tank model and the output of 
the model 3za, zb, Ta, Tb 4 is compared with the measurements. Part 
(a) shows the tank water temperature validation results. The solid 
lines are the temperature measurements of top layer water Ta and 
bottom layer water Tb in the tank, and the dotted lines show the 
predicted cool and warm water temperature. The simplified tank 
model captures the temperature dynamics of the top and bottom 
water layers as well as the height of the cool water in the tank. (a) 
Water temperature validation and (b) water height validation.
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FIGURE 9 The building load model has two subcomponents, 
namely, the solar and internal load predictor and the building ther-
mal load predictor. The solar and internal load predictor uses time, 
date, and cloud coverage as its inputs and calculates inside and 
outside solar loads and internal loads. The building thermal load 
predictor predicts the cooling load of buildings.



52 IEEE CONTROL SYSTEMS MAGAZINE » FEBRUARY 2012

The detailed equations describing the model in Fig -
ure 10 can be found in [8].

The load model in Figure 10 is used to model all the 
buildings on the University of California, Merced, campus 
where the parameters R1, R2, R3, R4, Cin, Cout are estimated 
using historical data. A nonlinear regression problem is 
solved to minimize the error between the actual cooling 
load demand and the predicted load demand. The 
 predicted load demand is obtained by simulating the 
model in Fig  ure 10 with measured inputs. The load model 
with estimated parameters is validated using load mea-
surements from June 1 to June 4, 2009 at University of Cal-
ifornia, Merced. Figure 11 presents the validation results. 
The measured building load is depicted as the dotted line 
and the solid line shows the building load predicted by the 
model in Figure 10. When the prediction mismatch exceeds 
desired tolerances, the system parameters need to be 
reidentified based on a new set of measured data. For 
other types of building load models, see [12] and [13]. 

Main Components Modeling
At a high level, the main components consuming energy 
are chillers, cooling towers, and pumps. It is assumed that 
the setpoints sent to these components are tracked instantly 
and without errors. The equations estimating the power 
consumption of each component are listed in Table 1, and 
Table 2 explains the notation used in Table 1. 

Chillers
A simple regression-based centrifugal chiller model is used 
[6]. In Table 1(1), the chillers’ electrical power is modeled as 
a static function of the chilled water supply temperature, 
condenser water supply temperature, mass flow rate of the 
chilled water supply, and the chilled water return tempera-
ture. The static chiller model is used to describe the 
chil lers performance at  University of California, 
Merced. Figure 12 presents the validation results based on 
the data collected from June 1 to June 3, 2009. The predicted 

chiller power in solid line captures the 
measurements in dotted line. 

Cooling Towers
The cooling towers use variable speed fans 
to track a setpoint for the condenser water 
supply temperature by rejecting the con-
denser water heat to the ambient environ-
ment through evaporation and convection. 
In Table 1(2), the simple cooling tower 
model [7] employs a regression equation 
to compute the fan speed required to pro-
duce condenser water with supply tem-
perature TCWS and mass flow rate m

#
CWS 

when the wet bulb temperature is Twb and 
the condenser water return temperature is 
TCWR. Then Table 1(3) approximates the 
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FIGURE 11 Campus load validation. The measured building load of 
the University of California, Merced, is depicted with a dotted line. 
The time frame is June 1–4, 2009. The solid line shows the 
 building load predicted by the building load model in Figure 10.

Equation 
Number Component Equation 

(1) Chillers PCH5Chiller 1TCHWS, TCWS, m
#

CHWS, Twb, TCHWR 2 . 
(2) Cooling Towers fAPP 1TCWS, TCWR, Twb, m

#
CWS, vfan 2 5 0. 

(3) — PCT5 c 1vfan 23. 
(4) Pumps 

q

q0
5
vpump

vpump
0

, 
Dp

Dp0
5 avpump

vpump
0 b2

. 

(5) — Dp05 fp 1q0 2 , h05 fh 1q 0 2 . 
(6) — Ppump5Dpq/h0 1qv0/v2 .

TABLE 1 Component models outside a building. This table lists the equa-
tions describing the components outside a building including chillers, cooling 
towers, and pumps. The descriptions of variables used in (1)–(6) are listed 
in Table 2. 
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FIGURE 10 A building thermal load model. R1 represents the ther-
mal resistance of windows. The walls are separated into two 
layers. Cin and Cout capture the wall thermal capacitance. The ther-
mal resistance between Cin and Cout is modeled by R3, while R2 
and R4 capture the thermal resistance associated with heat con-
vection. The model inputs are outside air temperature Toa, outside 
solar load Q

#
Solar,out, inside solar load Q

#
Solar,in, internal load Q internal, 

and the indoor temperature setpoint Tsp. The model output is the 
cooling load demand Q

#
Load. 
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cooling tower power consumption as a cubic function of 
the fan speed. This model is applied to model the cooling 
towers at University of California, Merced, and the valida-
tion results are reported in Figure 13. 

Pumps
When modeling the energy consumption of the pumps, it is 
assumed that the enthalpy change through a pumps is con-
stant. It is also assumed that the pump volumetric water 
flow, the pump speed, the pressure difference across the 
pump, and their corresponding nominal values denoted 
with the superscript  0 satisfy the affinity laws in Table 1(4). 
In Table 1(5), the pressure difference and efficiency under 
nominal operating conditions are approximated as polyno-
mial functions of the nominal volumetric water flow. The 
polynomial coefficients are obtained by fitting historical 
pump performance data. For a given pressure difference 
Dp and volumetric water flow rate q, the pump power is 
calculated using Table 1(6). The pump model is validated 
using measured data from the chilled water supply pump 
at University of California, Merced. The validation results 
are shown in Figure 14. 

Low Level: Modeling a Building from the Inside

Thermal Zones Temperature Dynamics
The objective of this section is to develop a simplified con-
trol oriented model for building HVAC systems suitable for 

Variable Description 

PCH Chiller power consumption 

TCHWS Chilled water supply temperature 

TCWS Condenser water supply temperature 

m
#

CHWS Mass flow rate of the chilled water supply 

TCHWR Chilled water return temperature 

PCT Cooling tower power consumption 

Twb Wet bulb temperature 

vfan Fan speed 

TCWR Condenser water return temperature 

q Pump volumetric water flow 

vpump Pump angular speed 

Dp Pressure difference across the pump 

h Pump efficiency 

Ppump Pump power consumption 

q 0 Pump nominal volumetric water flow 

vpump
0  Pump nominal angular speed 

Dp0 Nominal pressure difference across the pump

h0 Pump nominal efficiency 

TABLE 2 Notation for the models used in Table 1.
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FIGURE 12 Chiller model validation. The dotted line shows the 
electric power consumption of the two chillers installed at Univer-
sity of California, Merced, and the solid line is the power consump-
tion of the chillers predicted by the simplified model Table 1(1). 
Data was collected from June 1–3, 2009. 
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FIGURE 13 Cooling tower model validation. The dotted line depicts 
the measured electric power consumption of cooling towers 
located at University of California, Merced, and the solid line shows 
the power consumption of the cooling towers predicted by model 
Table 1(2) and (3). Data was collected from June 1–3, 2009.
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FIGURE 14 Pump model validation. The dotted line is the mea-
sured electric power consumption of the hydraulic pump 2 in 
Figure 5 located at University of California, Merced. The solid line 
is the pump power consumption predicted by model Table 1(4)–
(6). Data was collected from June 1–3, 2009.
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real-time optimization. We focus on a dynamic model of 
zone temperatures. In order to develop a simplified yet 
descriptive model, it is assumed that the pressure is con-
stant throughout the system and the amount of air exiting 
the zones is the same as the amount of air entering. 

Table 3 collects the static component models, and Table 
4 clarifies the notation used in Table 3. Table 3(1) calculates 
the supply air temperature to each zone, where Toa is the 
outside air temperature, d is the AHU damper position, 
and Tr is the return air temperature. In Table 3(2), Tr is cal-
culated as the flow-weighted average temperature of 
return air from each thermal zone. The return air is not 
recirculated if d 5 0 and no outside fresh air is used if 
d 5 1. d has to be strictly less than one to guarantee mini-
mum ventilation required by building codes. 

For a zone j in a system of Nv thermal zones, the tem-
perature dynamics can be modeled as a two-mass system 

 C1
j T1

j# 5m
#

s
jcp 1Ts

j2T1
j 21 T2

j 2 T1
j

Rj 1a
i[N j

T1
i 2T1

j

Rij
1

Toa2T1
j

Roa
j 1Pd

j ,

 (18) 

Cj
2T 2

# j
5

T1
j 2 T2

j

Rj ,  (19)

for all j5 1, 2, c, Nv. 
The thermal capacitance C1

j  is associated with the fast-
dynamic masses such as the air around VAV diffusers. 
The thermal capacitance C2

j  is associated with the slow-
dynamic masses such as the floors, walls, and furniture. 
The appearance of fast and slow temperature dynamics is 
described in [14] for residential buildings. In (18) and (19), 

T1
j  and T2

j  are the system states representing the tempera-
tures of the lumped masses of C1

j  and C2
j , respectively. The 

air temperature of thermal zone j is the temperature of the 
fast dynamic mass Tj5 T1

j . Nj is the set of neighboring 
thermal zones of zone j, Roa

j  is the thermal resistance 
between zone j and ambient temperature, and cp is the 
specific heat capacity of zone air. Rj models the thermal 
resistance between C1

j  and C2
j , Rij5Rji models the thermal 

resistance between zone i and neighboring zone j, and Pd
j  

is an unmeasured thermal load that is imposed by occu-
pancy and solar radiation. Figure 15 depicts a representa-
tive example RC network. 

The two-mass approach is used to model the tempera-
ture dynamics of thermal zones in the Bancroft Library 
located on the campus of the University of California,  
Berkeley. Next we show the results by focusing on a confer-
ence room without windows, indexed by j5 1, with one 
adjacent thermal zone indexed by j5 2. The parameters 
p5 3C1

1, C2
1, R1, R12, Roa

1 4 are identified using a nonlinear 
regression algorithm using measured data during week-
ends when the conference room has no occupants, that is 
Pd

1 5 0. Figure 16 compares the measured room temperature 
to the room temperature predicted by model (18) and (19) 
when driven by the measured inputs. 

Load
The load prediction Pd

j 1t 2  for each thermal zone j is impor-
tant for designing predictive feedback controllers and 
assessing potential energy savings. Various approaches are 
available to estimate occupancy load. For instance, the 
authors of [15] develop an agent-based model to simulate 

the occupants’ behavior in a build-
ing, and the work in [16] and [17] 
focuses on occupants’ behavior and 
mobility patterns using a wireless 
camera sensor network. 

Time varying bounds on the 
disturbance load Pd 1t 2  can be 
computed from the mismatch 
between a nominal model and 
historical data, and correlating 
the load bounds with shared cal-
endars, weather predictions, as 
well as predicted cloud coverage. 
This concept can be illustrated 
using the conference room dis-
cussed previously. The confer-
ence room calendar contained 
two regularly scheduled group 
meetings at 10:00 and 14:00 every 
Wednesday. The same meetings 
can be identified by inspecting 
the model mismatch between 
nominal model predictions and 
historical data. Figure 17 depicts 

Equation Number Component Equation 

(1) Supply air temperature Ts
j 5dTr1 112d 2Toa2DTc1DTh

j  

(2) Return air temperature Tr5 a
i

m
#

s
i T i/a

i
m
#

s
i  

(3) Fan power Pf5 c01 c1m
#

s1 c2m
#

s
2 

(4) Cooling coil power Pc5
m
#

sccpDTc

hcCOPc
 

(5) Heating coil power Ph
j 5

m
#

s h
j cp DTh

j

hh
jCOPh

 

(6) Coefficient of performance COP5
Ethermal

Einput
 

TABLE 3 Component models inside a building. Equation (1) evaluates the supply air 
temperature Ts

 j to zone j when the return air temperature is  Tr, the outside air temper-
ature is Toa, the damper position in air handling units (AHU) is d, and the temperature 
difference across the cooling coil and heating coils are DTc and DTh, respectively. 
The return air temperature is calculated by (2) as airflow rate weighted average of 
zone temperatures. Equations (3)–(6) collect formulas modeling the power consump-
tion of the supply fan in the AHU, the cooling coil in the AHU, and the heating coils in 
variable air volume boxes. The descriptions of variables used in (1)–(6) are listed in 
Table 4. 
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the envelope-bounded disturbance load during all 
Wednesdays in July 2010. The envelope is computed as 
the point-wise minimum and maximum difference 
between measured data and the nominal model 
described by (18) and (19) with Pd

1 5 0. The two peaks in 
the disturbance load envelope in Figure 17 correspond 
to two regularly scheduled group meetings. The off-
peak prediction errors can be attributed to unmodeled 
dynamics and external disturbances. 

Main Components
The components at the lower level of the architecture that 
use energy include dampers, supply fans, heating coils, 
and cooling coils. They are depicted in Figure 6. The supply 
fan uses electric power to distribute air to the zones, while 
the cooling and heating coils use the energy of the chilled 
and hot water. It is assumed that the power to drive the 
dampers is negligible. A simple energy consumption model 
for each component is presented next. 

Zone 4 Zone 5

Zone 1
Zone 2Zone 3

R23

R12R13

R 3

R 2

R 1

C 1
1

C 2
1

C 2
2C 1

2
C 3
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C 3
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P 3
d

P 1
d

P 2
d

FIGURE 15 Thermal zone network model. The thermal capaci-
tance C1

j  is associated with the fast-dynamic masses such as the air 
around variable air volume diffusers. The thermal capacitance C2

j  is 
associated with the slow-dynamic masses such as the floors, 
walls, and furniture. R j models the thermal resistance between C1

j  
and Rij5Rji models the thermal resistance between zone i and 
neighboring zone j, and Pd

j  is a current source modeling an 
unmeasured load imposed by occupancy and solar radiation.

Variable Description 

m
#
s
j  Supply air mass flow rate to thermal zone j 

Ts
j Supply air temperature to thermal zone j 

DTc Change in air temperature across AHU 
cooling coil 

DTh
j  Change in air temperature across reheat coil 

in VAV box at zone j  

d AHU recirculation damper position 

Toa Outside air temperature 

Tr  Return air temperature 

C1
j  Thermal capacitance associated with 

fast-dynamic masses in zone j  

C2
j  Thermal capacitance associated with 

slow-dynamic masses in zone j  

T1
j Temperature state representing lumped mass 

of C1
j  (air temperature of zone j )

T2
j Temperature state representing 

lumped mass of C2
j  

Roa
j  Thermal resistance between zone j and 

ambient temperature 

cp Specific heat capacity of zone air 

R j Thermal resistance between C1
j  and C2

j  

Rij5Rji Thermal resistance between zone i and 
adjacent zone j 

P j
d

Unmeasured load imposed by occupancy and 
solar radiation 

c0, c1, c2 Fan power fitting parameters 

hc Cooling coil efficiency 

hh
j  Efficiency of the heating coil in VAV box j 

Pc Electric power used by the cooling coil 

Ph
j  Fuel energy consumption rate associated 

with the heating coil in VAV box j. 

m
#
s c Airflow through the cooling coil 

m
#

sh
j Airflow through the heating coil in VAV box j 

COPc Cold water coefficient of performance 

COPh Hot water coefficient of performance 

TABLE 4 Notation for the models used in Table 3.
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FIGURE 16 Identification results of the thermal zone model (18) 
and (19). The solid line is the measured temperature collected 
from a conference room in the Bancroft Library located on the 
campus of the University of California, Berkeley, USA, on July 4, 
2010. The dashed line is the temperature predicted by the simpli-
fied thermal zone model (18) and (19) when driven by the mea-
sured inputs. The result shows that the model captures the thermal 
dynamics of the conference room without occupants or solar load.
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Fan Power
In Table 3(3), the fan power is approximated as a second 
order polynomial function where c0, c1, and c2 are parame-
ters identified by fitting recorded data, and m# s is the mass 
flow rate of supply air through the supply fan. The simpli-
fied fan model predictions are compared in Figure 18 to the 
data recorded at the University of California, Berkeley, Ban-
croft Library from October 1–10, 2010. 

Cooling and Heating Coils
Cooling coils and heating coils are air-water heat ex -
changers. There are many examples of coil models in the 
literature [18]–[20]. In this article we use a simple coil 
model with constant efficiency (hc for cooling coils and 
hh for heating coils). With this simplification the energy 
consumption model is a static function of the load on the 
air side. In Table 3(4) and (5), the electric power associ-
ated with the chilled water used by the cooling coil Pc 
and the thermal power associated with the hot water 
used by the heating coils Ph are computed as the thermal 

power delivered to the air side divided by the energy 
conversion efficiency (h) and the coefficient of perfor-
mance (COP). The COP defined in Table 3(6) captures the 
efficiency of the chilling and heating systems, that is the 
amount of thermal energy Ethermal (J) generated by the 
central plant with one Joule of total energy consumed 
Einput by the plant. 

PREDICTIVE CONTROL DESIGN 
WITH ACTIVE THERMAL STORAGE
As buildings become smarter the large number of decou-
pled local controllers, together with coordination strate-
gies based on heuristic rules-of-thumb, become difficult 
to design, tune, maintain, and upgrade. For more details 
on current approaches for building control design, see 
“Current Building Operation and Control Logic.” MPC 
naturally enters the picture as a systematic control meth-
odology that can handle large-scale multi-input, multi-
output (MIMO) dynamically coupled systems, with 
performance guarantees and the unique capability to 
explicitly handle system constraints. The models pre-
sented in the previous section can be used to design 
MPC algorithms at both the high and low level of build-
ing control architectures. 

The MPC architecture presented in this article is 
depicted in Figure 19. A high-level MPC (HMPC) is 
deployed to optimize the operation and schedule of the 
cooling and heating systems with active thermal storage. 
A low-level MPC (LMPC) controls the VAV boxes and the 
AHUs in each building to guarantee occupant thermal 
comfort constraints. At both levels, various predictions 
can be included in the constraints and in the cost function 
to control the system in an efficient and effective way. 
These predictions include building loads, load shedding 
signals from the power grid, utility prices, weather, occu-
pancy, and solar radiation. In addition, HMPC and LMPC 
can exchange information to achieve a better perfor-
mance. For example, the occupancy load prediction from 
LMPC can help HMPC achieve a better accuracy of build-
ing load predictions. Also, the chilled and hot water tem-
perature predictions from HMPC impose constraints for 
the LMPC on achievable supply air temperature down-
stream of the cooling and heating coils, respectively. 

The following optimization problem is used to describe 
both the HMPC and LMPC 

 Jw 1x 1t 2 , t 2 5 min
ut 0 t, c, ut1N21 0 t a

N21

k50
J 1xt1k 0 t, ut1k21 0 t, k2

 1 JN 1xt1N 0 t 2  (20) 

subject to 

 xt1k11 0 t5 f 1xt1k 0 t, ut1k 0 t, dt1k 0 t, k 2 , for all k5 0, 1, c, N2 1,

 (21) 
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FIGURE 17 Envelope-bounded disturbance load during all 
Wednesdays in July 2010 in the conference room of the Bancroft 
Library at the University of California, Berkeley. The envelope is 
computed as the point-wise min and max difference between 
measured data and the nominal model. The two peaks in the dis-
turbance load envelope correspond to two regularly scheduled 
group meetings.
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FIGURE 18 Fan identification results. The crosses are the mea-
sured power consumption of an air handling unit supply fan at the 
Bancroft Library, and the solid line is the power predicted using 
the simplified model Table 3(3).
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Most modern buildings employ some level of automated con-

trol. In certain cases the control logic may be complex and 

optimized, but in the majority of cases building systems are con-

trolled by basic control logic that errs on the side of simplicity over 

subtlety. This simple control logic is implemented with distinct but 

interconnected proportional-integral-derivative (PID) control loops 

and switching logic. This logic responds to setpoints and sched-

ules for building components such as chillers and cooling towers. 

Controlled parameters include the chilled water supply mass flow 

rate, chilled water temperature, condenser water mass flow rate, 

condenser water temperature, operation schedule of the chilling 

system, and the storage level of the thermal storage element. 

Advanced decision systems are available on the market to 

optimize the high-level system based on component modeling, 

feedback, and forecasts. A variety of proprietary control se-

quences for chillers, boilers, and cooling towers are available in 

the building industry. However, to the best of the authors’ knowl-

edge, their implementation is not widespread and often limited 

to specific configurations and components of the cooling and 

heating systems. 

At the low level, the current practice is to use single-input, 

single-output cascaded controllers to achieve stable behavior 

and modest disturbance rejection. To this aim, controllers are 

designed locally and independently, with the goal of decou-

pling the multiple components involved. 

A classical example for control logic architectures used for 

air handling units (AHUs) and variable air volume (VAV) box-

es is depicted in Figure S1. In each thermal zone, the control 

system generates a cooling or heating request when the zone 

temperature is higher or lower than the setpoint, respectively. 

Each individual request is used to adjust setpoints for the cor-

responding VAV box. The sum of all requests is used to adjust 

setpoints for the AHU. 

The setpoint adjustment usually follows proportional laws, 

as depicted in Figure S2, for a VAV box. When the zone tem-

perature is lower than the comfort range, denoted by the dashed 

lines in Figure S2, the heating coil valve position command is 

proportional to the difference between zone temperature and 

the lower-bound on comfort level, and the air mass flow rate is 

set to the minimum ventilation level. When the zone temperature 

is within the comfort range, the VAV box maintains the minimum 

ventilation level. When the zone temperature is higher than the 

comfort range, the supply airflow rate increases proportionally 

with the difference between zone temperature and the upper 

bound on comfort level. 

The total number of cooling requests is used to deter-

mine the total cooling energy required to guarantee the 

thermal comfort. The AHU supply fan is often controlled to 

a pressure setpoint which varies in time depending on the 

Current Building Operation and Control Logic

FIGURE S2 Simple proportional control logic. When the zone 

temperature is lower than the comfort range (dashed lines) 

the heating coil valve position command is proportional to the 

difference between zone temperature and the lower-bound on 

comfort level, and the air mass flow rate is set to the minimum 

ventilation level. When the zone temperature is within the com-

fort range, the variable air volume box maintains the minimum 

ventilation level. When the zone temperature is higher than the 

comfort range, the supply airflow rate increases proportion-

ally to the difference between zone temperature and the upper 

bound on comfort level.
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FIGURE S1 Current control logic schematic. In each thermal 

zone, the control system generates a cooling or heating re-

quest if the zone temperature is higher or lower than the set 

point, respectively. Each individual request is used to adjust 

set points for the corresponding variable air volume (VAV) 

box. The total number of cooling and heating requests is used 

to determine the total cooling and heating energy required to 

guarantee the thermal comfort. The air handling unit (AHU) 

supply fan is operated to track an air pressure setpoint to en-

sure that enough air flow can be provided by the VAV box to 

each zone.
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 yt1k 0 t5 g 1xt1k 0 t, ut1k21 0 t, dt1k 0 t, k2 , for all k5 0, 2, c, N,
 (22) 

 yt1k 0 t [ Y, for all k5 1, 2, c, N, (23) 

 ut1k 0 t [ U, for all k5 0, 1, c, N2 1, (24) 

 dt1k 0 t [ D 1t1 k 2 , for all k5 1, 2, c, N, (25)

where Y is set of feasible system outputs y, U is the fea-
sible set of control inputs u, JN 1x 2  is the terminal cost 
function, f 1x, u, d, k 2  is the time varying state update 
equation, d is the disturbance, and D is the set of possible 
disturbances. Disturbances dk can be predicted by a 
dynamic model such as building load model in Figure 10. 
An alternative approach is to obtain the future admissi-
ble set of disturbances D 1t1 k 2  by external modules such 
as the occupancy model in Figure 17. 

Let UtSt1N21 0 tw 5 5ut 0 tw , c, ut1N21 0 tw 6  be the optimal solu-
tion to problems (20)–(25) at time t. Then the first ele-
ment of UtSt1N21 0 tw  is applied to the system, u 1t 2 5 ut 0 tw . The 
optimization problems (20)–(25) are repeated at t1Dt, 
with the updated state xt1Dt 0 t1Dt5 x 1t1Dt 2 , yielding a 
moving or receding horizon control strategy. 

The cost function, model dynamics, constraints, 
and disturbances depend on the abstraction level and 
the specific problem of interest. Two detailed imple-
mentations of HMPC and LMPC schemes are pre-
sented in the following sections. We remark that when 
a nominal model of the  disturbances dk is replaced by 
a set valued model, that is dk [ D 1k 2  with a given prob-
ability distribution function, then robust or stochastic 
MPC formulations [21]–[25] need to be used in place 
of (20)–(25). 

total number of cooling requests. This scheme, known as 

supply pressure reset, ensures that the air pressure at each 

VAV box is high enough to provide the requested air flow to 

all zones. 

In addition to basic control logic, a myriad of advanced 

heuristics are used to reduce the overall energy consump-

tion. For instance in certain combinations of ambient condi-

tions and zone thermal demands, energy use can be lowered 

by increasing the proportion of outside air flow. This control 

logic is known as economizer operation. Supply temperature 

reset is another energy-saving control strategy and is imple-

mented to reduce the chilled water consumption. When the 

zone temperatures are within the comfort constraints, the AHU 

supply temperature setpoint is increased slowly until one of the 

zones flags a cooling request. This modification to the supply 

air temperature setpoint enables the cooling coil to consume 

less chilled water, thus reducing the energy consumption of 

the chillers and cooling towers. However, when supply tem-

perature is raised, zones in cooling mode require a higher flow 

rate to maintain the same zone temperature. Therefore, when 

a zone is in cooling mode the chiller energy saved is counter-

balanced by increased fan energy. In this case, energy predic-

tion models need to be used to assess the validity of supply 

temperature reset strategies. 
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FIGURE 19 Hierarchical model predictive control (MPC) structure for a building control system. A high-level MPC (HMPC) is deployed to 
optimize the operation and schedule the cooling and heating systems with active thermal storage. A low-level MPC (LMPC) controls the 
variable air volume boxes and the air handling units by considering thermal comfort constraints of the occupants. At both levels a variety 
of predictions can be included in the models and in the cost function to control the system in an efficient and effective way. These predic-
tions include building loads, load shedding signals from the power grid, utility prices, weather, occupancy, and solar loads. 
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MPC for High-Level Control
The objective of HMPC is to minimize the electrical energy 
consumption while generating enough chilled and hot 
water. A typical cost function of the HMPC in (20) penal-
izes total electricity cost and the deviation from the build-
ing thermal energy demand satisfaction. The cost can be 
further extended to include the peak load requests, time 
varying utility prices, and time varying availability of 
renewable energy. The control variables to be optimized by 
MPC include the chilled water supply temperature TCHWS, 
condenser water supply temperature TCWS, chilled water 
supply flow rate m# CHWS, chilling system start time ts, and 
chilling system end time tend. The dynamic system 
f 1x, u, d, k 2  includes the storage dynamics in (12)–(13), and 
the disturbance d includes weather and building load 
demand. 

University of California at 
Merced Experimental Testing
A version of the HMPC controller is implemented at Uni-
versity of California, Merced. The detailed experimental 
setup can be found in [9] and is briefly described next. 
MPC computes the setpoints for cooling towers, chillers, 
and the thermal storage tank at the central plant. The MPC 

algorithm is implemented in Matlab and runs in real time 
on a Pentium 4 Intel processor. The MPC algorithm receives 
and sends data to the campus through the building auto-
mation system “Automated Logic Web Control.” 

Two experiments are executed in order to evaluate the 
benefits of MPC compared to conventional controllers. 
Experiment 1 (E1) is the baseline performance. During E1, 
the plant is operated manually using the policy defined by 
the plant managers. The control policy is based on the oper-
ators’ experience. The data for E1 was collected from May 
27–31, 2009. Experiment 2 (E2) implements the HMPC con-
troller described in the previous section. The data for E2 
was collected from October 6–10, 2009. The quantity of 
chilled water stored in the tank at the end of the experi-
ment is required to be equal to the quantity available at the 
beginning of the experiment. Despite the difference in 
time, the weather conditions during E1 and E2 are similar 
as shown in Figure 20(a). For this reason, we can fairly 
compare the HMPC performance to the baseline control 
logic. The performance of the cooling system is measured 
through the COP defined by Table 3(6). 

The results of real-time experiments indicate that the 
performance of the central plant controlled by HMPC is 
improved by 19% in terms of COP, which corresponds to a 
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FIGURE 20 Experimental results of the central cooling plant with thermal storage at University of California, Merced, controlled by the 
high-level model predictive control (MPC) (E2). The plant coefficient of performance (COP) is improved by 19%, which corresponds to 
a total of US$1,280 weekly savings compared to the original baseline control logic (E1). We note that the MPC applies a higher mass 
flow rate of chilled water supply, and it schedules the chillers to operate during the period with the lowest ambient temperature. As a 
result, the combined chiller and cooling tower efficiency is increased. Also, MPC applies a slightly higher chilled water supply tempera-
ture, improving the COP of the chilling system according to its performance curve. (a) Ambient temperature during E1 (solid line) and 
E2 (dotted line), (b) mass flow rate of chilled water supply, (c) temperature of chilled water supply, and (d) temperature of condenser 
water supply.
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total of US$1,280 weekly savings compared to the original 
baseline control E1. The improvement can be explained by 
the control input profiles plotted in Figure 20. HMPC in E2 
applies a higher mass flow rate of chilled water supply than 
E1 [Figure 20(b)], and uses a different schedule in order to 
operate the chilling system during the period with the 
lowest ambient temperature. As a result, the combined 
chiller and cooling tower efficiency is enhanced. HMPC in 
E2 applies a slightly higher chilled water supply tempera-
ture than E1, improving the COP of the chilling system 
according to the performance curve of the chilling system 
Table 1(1). Also, HMPC in E2 applies higher condenser 
water supply temperature than E1, shown in Figure 20(d). 
This adjustment enables the chilling system to better bal-
ance the loads on chillers and cooling towers. Further 
details can be found in [8] and [9]. 

MPC for Low-Level Control
The objective of LMPC is to minimize energy consump-
tion in the form of cold water, hot water, and electricity 
while maintaining the thermal zones within the comfort 
range. The model for this level is described by Table 3(1) 
and (2) and (18) and (19). The control inputs optimized by 
the LMPC are AHU supply fan speed, recirculation 
damper position, cooling and heating coil water valve 
positions, and zone VAV damper positions. The cost 
function is the following combination of terms from 
Table 3(3)–(5). 

 J 1x, u, k 2 5 re 1k 2Pf 1u 2 1 re 1k 2Pc 1u 2 1 rh 1k 2a
j

Pj
h 1u 2  (26)

where re 1k 2  and rh 1k 2  refer to the utility rate in dollars per 
unit energy for electricity and heating fuel, respectively. 

Simulation Results
To demonstrate LMPC results, we construct a simple five-
zone building model with input thermal loads, as shown 

in Figure 21. The heat transfer between the five zones is 
neglected. The first four zones have equal and negative 
loads that require heating (except briefly in the after-
noon). Zone 5 has a high positive load that requires cool-
ing during occupied hours, with a small negative load in 
unoccupied hours. 

The nominal LMPC results in Figure 22 show the trad-
eoff between supply temperature and mass flow rate. 
Between 6:30 and 10:00, we can see economizer and tem-
perature reset-like operation where cooling of Zone 5 is 
performed using outside air, warmer supply temperatures, 
and high mass flow rates. For details on economizer and 
temperature reset operation see “Current Building Opera-
tion and Control Logic.” This control scheme saves energy 
because the rest of the zones are in heating mode during 
this period, and any cooler supply temperature would 
require reheating to keep those zone temperatures above 
their lower bounds. Once all of the zones are in cooling 
mode, controlling the cooling coil to the minimum feasible 
supply temperature and using lower flow rates becomes a 
more efficient strategy. We see a brief supply temperature 
reset behavior again near the end of the occupied hours at 
18:00. Anticipating less cooling demand for the unoccupied 
period, the LMPC controller starts increasing the supply 
temperature early. 

To compare against the nominal case LMPC results in 
Figure 22(a) and Figure 22(b), we repeat the calculations 
with modified versions of the cost function. First, in 
Figure 23(a), we modify the electric utility rate re 1k 2  to 
have a higher value between 12:00 and 16:30. In Figure 
23(b), the utility rates are constant throughout but we add 
an additional penalty term to the cost function to mini-
mize the peak electric power over the entire day. The 
modified cost function is

 Jmod 1x, u, k 2 5 re 1k 2Pf 1u 2 1 re 1k 2Pc 1u 2 1 rh 1k 2a
j

P j
h 1u 2

 1w max
k
1Pf 1u 2 1 Pc 1u 22 ,  (27)

where w is a penalty weighting factor in dollars per unit 
power. Both these modified cases in Figure 23(a) and 23(b) 
demonstrate precooling of Zone 5 and lengthened cooling 
of Zones 1–4, but with different timing and intent. In Figure 
23(a), the peak electric power is not penalized in the cost 
function but the electric utility rate has a higher value 
between 12:00 and 16:30. As a consequence, precooling is 
only performed immediately before noon, with a corre-
sponding spike in cooling power, so that less cooling 
energy is used between 12:00 and 16:30. In Figure 23(b), the 
peak electric power is included in the cost function, so 
Zone 5 is precooled earlier in the morning. As a result, 
 cooling power is increased at a time when it would nor-
mally be low, shifting electric power use away from the 
times it would normally be at maximum. 
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i. The first four zones have an equal 
load that requires heating, with the exception of a short period in 
the afternoon. Zone 5 has a high positive load that requires cooling 
during occupied hours, with a small negative load during unoccu-
pied hours.
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FIGURE 22 Simulation results of five thermal zones controlled by model predictive control (MPC). The results show a complicated tradeoff 
between supply temperature and mass flow rate. Between 6:30 and 10:00, we can see economizer and temperature reset-like operation 
where cooling of Zone 5 is performed using outside air, warmer supply temperatures, and high mass flow rates. This control scheme 
saves energy because the rest of the zones are in heating mode during this period, and any cooler supply temperature would require 
reheat to keep those zone temperatures above their lower bounds. Once all of the zones are in cooling mode, controlling the cooling coil 
to the minimum feasible supply temperature and using lower flow rates becomes a more efficient strategy. We see a brief supply tem-
perature reset behavior again near the end of the occupied hours at 18:00. Anticipating less cooling demand for the unoccupied period, 
MPC starts increasing the supply temperature early. (a) Nominal case zone results and (b) nominal case air handling unit results.
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FIGURE 23 Simulation results of five thermal zones controlled by model predictive control. In (a), the electric utility rate has a higher 
value between 12:00 and 16:30. In (b), the utility rates are constant throughout, but the maximum electric power over the entire day is 
penalized in the cost function. Both figures demonstrate the precooling of Zone 5 and lengthened cooling of Zones 1–4, but with differ-
ent timing and intent. In (a), precooling is only performed immediately before noon, with a corresponding spike in cooling power, so that 
less cooling energy is used between 12:00 and 16:30. In (b), the peak electric power is included in the cost function so Zone 5 is pre-
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electric power use away from the times it would normally be at maximum. (a) Variable utility rate case and (b) peak power limiting case.
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MPC MAIN ISSUES AND CURRENT RESEARCH
The appealing advantages of MPC shown though simula-
tions and experiments in the previous sections do not come 
without a price. Several issues have to be considered while 
designing and implementing MPC for buildings. In the 
remainder of this section, we present some design and 
implementation considerations. 

Design Considerations

Stability and Feasibility
The stability and feasibility of MPC are well-studied issues 
[3]. In particular, it has been shown that stability and feasi-
bility are not ensured by the MPC law without terminal 
cost and constraints [3]. Typically the terminal constraint is 
a robust control invariant set so that the persistent feasibil-
ity of the MPC strategy is guaranteed. Persistent feasibility 
ensures that if the MPC (20)–(25) is feasible for a given ini-
tial state x 10 2 , then it is feasible for all t $ 0. Definitions 
and properties of invariant sets can be found in [3] and [26]. 
In the specific context of the MPC considered in this article, 
the terminal set ensures that enough energy is actively 
stored in thermal storage elements to counteract a bounded 
unpredicted change in demand. A treatment of sufficient 

conditions guaranteeing a persistent feasibility of MPC 
problems goes beyond the scope of this work and can be 
found in the survey [3] and in [6] for the specific case of the 
University of California, Merced, study. 

Prediction Uncertainty
The example in the first section of this article showed 
benefits of MPC under the assumption that MPC has 
perfect knowledge of predicted disturbances and system 
dynamics. This section tries to highlight potential issues 
associated with this assumption. We focus on total 
energy consumption using the simple MPC problem 
(3)–(6) with k5 0. The control design assumes that 
weather prediction in Figure 1(a) is perfect and occu-
pancy load prediction in Figure 1(b) is perfect. This time 
we assume that in reality the occupancy load differs 
from what was predicted. Two scenarios are considered. 
In scenario S1 the future occupancy load is exactly the 
same as predicted in Figure 1(b), with probability P 1S1 2  
equal to a. In scenario S2, the occupancy load is zero 
over the entire day with probability P 1S2 2  equal to 12a. 
In short, the controller is designed based on S1 but the 
probability of S1 happening is a. 

The expected value of the control input cost E 3 Ju 4 and 
constraint violation E 3 Je 4 for MPC C2 and proportional con-
troller C1 are computed in a closed-loop. The closed-loop 
simulations use different occupancy load profiles depend-
ing on the chosen probability a. 

Simulation results for various values of a and various 
tunings for MPC C2 and proportional controller C1 are 
summarized in Figure 24. When the prediction is perfect 
with a5 1, the performance of MPC C2 is the same as the 
proportional controller C1 in terms of total energy con-
sumption and constraint violation. However, the MPC per-
formance deteriorates as a decreases. In fact, MPC fails to 
keep the zone temperature within the comfort constraints 
due to the misleading predictions. MPC consumes more 
energy than the proportional controller for a5 0.5 and 
a5 0 because MPC is performing precooling even if occu-
pants do not enter the space. 

Stochastic MPC [23], [27] might be a better approach to 
address this issue when probability distribution functions 
of the loads are available. In this case, we would minimize 
expected costs and satisfy constraints with a given probabil-
ity. We are currently investigating this research direction 
and its real-time computational complexity. 

Implementation Considerations

Convergence to Suboptimal Solutions
The product between air temperatures and mass flow rates 
in the thermodynamic energy balance (18) and (19) leads to 
a nonconvex MPC problem which might have distinct 
locally optimal solutions. Fast computational techniques 
for solving nonconvex optimization such as sequential 
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FIGURE 24 The model predictive control (MPC) is designed 
assuming a perfect prediction of occupancy profile. In reality, the 
probability of the occupancy profile being correct is a. The figure 
shows the expected control input cost E 3Ju 4 and constraint viola-
tion E 3J e 4 for MPC and for the proportional controller in a closed-
loop. The closed-loop simulations use different occupancy load 
profiles depending on the chosen probability a. When the predic-
tion is perfect (a5 1), the performance of MPC is the same as 
the proportional controller in terms of total energy consumption 
and constraint violation. However, the MPC performance deterio-
rates as a decreases. In fact, MPC fails to keep the zone tem-
perature within the comfort constraints due to the misleading 
predictions. MPC consumes more energy than the proportional 
controller for a5 0.5 and a5 0 because MPC is precooling even 
if occupants do not enter the space.
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quadratic programming (SQP) can only provide certifi-
cates of local optimality. These locally optimal solutions 
might be less efficient than those obtained with a simpler 
control design. We are currently analyzing different types 
of local optima and their physical interpretation. The anal-
ysis can be used to derive branch and bound rules which 
allow an SQP solver to converge to globally optimal control 
sequences. 

Computational Complexity of Model Predictive Control
As the complexity of the building model increases, cen-
tralized MPC might become computationally intractable 
due to the limited computational resources available on 
current building control platforms. This limitation is crit-
ical at the low level of the control architecture where dis-
tributed inexpensive computing platforms are common. 
The limitation might be overcome by efficient numerical 
solvers tailored to the specific hardware or with the use of 
distributed MPC [28], [29]. In distributed MPC, the cen-
tralized problem is decomposed into a set of smaller 
problems which can be associated with different subsys-
tems such as VAV boxes and AHUs. Each subsystem 
solves local small MPC problems with information from 
local and neighboring subsystems. The local MPC mod-
ules communicate with each other to converge to an opti-
mal solution [29]. 

An alternative approach to address the computational 
complexity of MPC is to precompute the control action for a 
set of initial states and external parameters. A lookup table 
can be generated by gridding the space of parameters and 
states and solving the optimization problem offline for each 
grid point. For linear and switched linear systems the grid-
ding can be avoided using multiparametric optimization 
[30]. In the specific context of MPC for buildings, the authors 
of [31] present a rule extraction approach. Rather than run-
ning an online MPC in real time, many simulations of the 
MPC are executed offline. The simulation results are then 
used to generate simplified rule-based controllers as func-
tions of operating conditions. 

Equipment Retrofitting
MPC requires sensor data from a building in order to ini-
tialize simulations and make predictions. Additionally, 
there must be some way to communicate the computed 
optimal control inputs either to lower level controllers 
(for setpoint tracking) or directly to the control actuators. 
Modern digital building automation systems satisfy 
these requirements, but are only present in new build-
ings. In order to apply MPC to the existing stock of older 
buildings, HVAC equipment must be retrofitted for digi-
tal control and additional sensors need to be added or 
existing sensors replaced with digital versions. This can 
be prohibitively expensive, and must be offset by the 
operational energy cost savings of MPC versus the base-
line control. 

CONCLUSIONS
A simple thermal mass model has been used to show the 
basic mechanism of active thermal storage and how this 
mechanism naturally emerges in a predictive control 
scheme. The model is also used to demonstrate a funda-
mental tradeoff involving savings, losses, and uncertainty 
in load shifting. In the second part of this article, we have 
provided the main ingredients of a predictive control 
framework implementable in a building equipped with 
thermal storage. Both the energy conversion and the energy 
distribution problems have been solved using an MPC 
scheme. Simulations and experimental results have shown 
the effectiveness of the control scheme. In particular, the 
performance of MPC exhibits several aspects of heuristic 
HVAC control sequences in a coordinated manner. The 
delivery of the proposed predictive control technologies is 
contingent on gaining an understanding of several design 
and implementation aspects specific to the building indus-
try. Some of these considerations have been reported in the 
sidebars and in the last part of the article. 
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